

Introduction and Overview

- Nokia Research overview
- Networking moving to distributed control
 - System design moving from centralized to distributed
 - Reduce cost of operation
 - Emerging pervasive networks
- 4 design paradigms for self-organization
 Based on analysis of existing protocols
- Two examples in multi-hop wireless networks
 - Distributed resource control in multi-hop networks
 - Gateway discovery and multi-hop handover
- New challenges for emerging ubiquitous networks
 - From distributed to self-organized system design

Main reference: Christian Prehofer, Christian Bettstetter, **Self-Organization in Communication NORMA Networks: Principles and Design Paradigms**, IEEE Communications Magazine, July 2005.

Summary of Paradigms and Examples

Paradigms

- 1. Achieve global properties with local behavior
- 2. Do not aim for perfect coordination
 - Implicit coordination
- 3. Minimize long-lived state
- 4. Adaptation

Examples

- Addressing and Naming
 - IPv6, ad-hoc networks
- Resource and congestion control and access
 - TCP
 - Medium Access (MAC) protocols
 - Distributed resource control in multi-hop networks
- Resource discovery
 - Proactive and reactive discovery
 - Multi-hop handover
- Data collection in pervasive networks

Paradigm #2: Do not Aim for Perfect Coordination: Implicit Coordination

"Talking is silver, silence is golden"

- Robustness often more important than perfect or optimal solution
- When can we admit inconsistencies?
 - Need to be detectable or contained
- What is implicit coordination?
 - E.g. Listening and observing, randomization
 - No explicit signaling, no dedicated, central controllers

Examples

- TCP way of implicit communication: packet loss
- Local address assignment: Usage of passive duplicate address detection
- WLAN MAC protocols with Carrier Sense Multiple Access
- Distributed resource control in multi-hop networks
 - Listening and overhearing to minimize control messages

Connecting People

Summary and Outlook

Design principles of self-organization

- Identification of main paradigms of self-organized networks
- Self-organization leads to new research approaches and system design
- Towards "design patterns" and methodology for self-organized systems

Related trends & opportunities

- Context-aware pervasive systems
 - How to manage context information?
- Web services & service oriented architecture for pervasive systems
 - Stateless services and "document-oriented computing"
- Self-organized security mechanisms
 - Bio-insprired anti-body generation for mal-ware detection

